3D extinction mapping of molecular clouds & better photometry matching Tom Wilson University of Exeter Supervisor: Tim Naylor

3D extinction mapping of molecular clouds & better photometry matching

Galactic Structure: Introduction **Distance Determination** 3D Extinction – Naïve & **IPHAS 3D** Extinction - Bayesian

Introduction **First Results**

- Symmetric Catalogue Matching:
- Asymmetry & Symmetrisation
- Photometric & Astrometric Distributions

Introduction

ESA/NASA

Introduction

Bruno Gilli/ESO

Introduction

Mapping the Milky Way

115

Galactic Longitude

Mapping the Milky Way

v = -5.96 km/s

APOD/NASA

ESO

B, I, K

3D Extinction

Cloud	Literature Distance	Sale et al. 2014 ^[1] Distance
Sh 2-235	1.8kpc ^[2]	1.2kpc
W3	1.95kpc ^[3]	1.7kpc
NGC7538	2.7kpc ^[4]	3kpc

Brunier, ESO

- Sale, S. et al., 2014, MNRAS, 443, 2907 1.
- Evans N. II, Blair G. ,1981, ApJ, 246, 394 2.
- Xu Y. et al., 2006, Science, 311, 54 3.
- Moscadelli L. et al., 2009, ApJ, 693, 406 4.

$$A_{\lambda} = \frac{A_{\lambda}}{A_{V}} A_{V} = \left(\frac{k(\lambda - V)}{E(B - V)} R_{V}^{-1} + 1\right) A_{V}$$
$$k(\lambda - V) = \frac{E(\lambda - V)}{E(B - V)} = \frac{0.349 + 2.087 \cdot R_{V}}{1 + (\frac{\lambda}{0.507})^{\alpha}},$$

 $k(\lambda - V) = c_1 + c_2 \lambda^{-1} + c_3 \frac{\lambda^{-2}}{(\lambda^{-2} - \lambda_0^2)^2 + \lambda^{-2} \gamma^2} + c_4 F$

3D Extinction – Bayesian

- p(M) the prior
- p(M I D) the posterior
- p(D I M) the likelihood
- p(D) normalisation

$p(M \mid D) = \frac{p(D \mid M)p(M)}{p(D)}$

3D Extinction – Bayesian

- p(M) the prior
- p(M I D) the posterior
- p(D I M) the likelihood
- p(D) normalisation

$p(M \mid D) = \frac{p(D \mid M)p(M)}{p(D)}$

3D Extinction – Bayesian $p(\phi|\{\mathbf{D}\}) = \prod_{i} \iint \frac{p(\mathbf{D}_{i}|\phi, \mu, \mathbf{\Theta}) \, p(\phi, \mu, \mathbf{\Theta})}{p(\mathbf{D}_{i})} \, \mathrm{d}\mathbf{\Theta} \, \mathrm{d}\mu$

z/kpc

-1.5

-2.0

[Fe/H] [Fe/H]

 $p(age) \propto const$ p(q=0) = 0.5 $p(q>0) = \frac{0.5}{N}$

0.0

Kroupa P., 2001, MNRAS, 322, 231 Green G.. et al., 2014, ApJ, 783, 114 Bell C. et al., 2014, MNRAS, 445, 3496 Dotter A. et al., 2008, ApJS, 178, 89 Allard F,. Homeier D., Freytag B., 2011, ASPCS, 448, 91

$\begin{aligned} & \textbf{3D Extinction} - \textbf{Bayesian} \\ & p(\phi | \{ \mathbf{D} \}) = \prod_{i} \iint \frac{p(\mathbf{D}_{i} | \phi, \mu, \Theta) \, p(\phi, \mu, \Theta)}{p(\mathbf{D}_{i})} \, \mathrm{d}\Theta \, \mathrm{d}\mu \end{aligned}$

3D Extinction - RESULTS Just kidding, no results yet • The answer is probably 42, or

something

Symmetric Probabilistic Catalogue Matching - Intro

WISE: Wright E. L. et al., 2010, AJ, 140, 1868

APASS; APASS+IPHAS; 2MASS; WISE

SPCMatching - Intro

SPCMatching – Asymmetry

× 14

16

18 0.0

Naylor T., Broos P. S., Feigelson E. D., 2013, ApJS, 209, 30

SPCMatching – Symmetrisation

16 18 b / mag

SPCMatching – functions $p(\sigma,\lambda,M|\gamma,\phi) = K \quad \prod N_{\gamma}f_{\gamma}(m_{\delta}) \quad \prod N_{\phi}f_{\phi}(m_{\omega}) \quad \prod N_{C}G(\Delta x_{\sigma_{i}\lambda_{i}},\Delta y_{\sigma_{i}\lambda_{i}})p(m_{\sigma_{i}},m_{\lambda_{i}})$

i=1

 $\delta \not\in \sigma \cap \delta \in \gamma$ $\omega \not\in \lambda \cap \omega \in \phi$

Normalisation Field star magnitude density density

distribution and number

Counterpart magnitude distribution

SPCMatching – functions: g

 $p(\sigma,\lambda,M|\gamma,\phi) = K \prod_{\delta \not\in \sigma \cap \delta \in \gamma} N_{\gamma} f_{\gamma}(m_{\delta}) \prod_{\omega \not\in \lambda \cap \omega \in \phi} N_{\phi} f_{\phi}(m_{\omega}) \prod_{i=1} N_C G(\Delta x_{\sigma_i \lambda_i}, \Delta y_{\sigma_i \lambda_i}) p(m_{\sigma_i}, m_{\lambda_i})$

SPCMatching – Results

mag

3D Extinction + Catalogue Matching Conclusions

- Powerful technique to analyse galactic structure
- Allows for kinematics and distances simultaneously
- Applicable to wide range of data sources, e.g., 2MASS+IPHAS Allows for probing of fundamental properties of the ISM, e.g., R_V

 Symmetrised method for more accurate catalogue matching • Avoids faint star mismatches Allows for more reliable and distant photometric matches for poor quality data

