
Things I Wish I Knew About 
Python Four Years Ago, Or

How to avoid doing any actual coding of your own



Python 2 vs 3
Python 2 Python 3

xrange(0, 5) range(0, 5)

3 / 2 = 1 3 / 2 = 1.5

print “hi” print(“hi”)

from __future__ import division, print



Never Doing Any Work of 
Your Own

NumPy Scipy astropy emcee



Maths Done For You



Maths Done For You



Never Having To Think 
About What’s Happening

Powerful for loops

Data type control

Beware array casting!



Never Having To Think 
About What’s Happening

Logical Slices

Last axis referencing

Beware view vs copy!



Never Having To Think 
About What’s Happening

Index Manipulation



Making Fancy Plots

0.0 a 0.4 0.6, 0.8
0.0

b

0.4

0.6,

q

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0



Making Fancy Plots



Reading Files In And Out

import os 
os.remove(file) 

os.system(‘terminal command’) 
os.path.exists(file) 

os.makedirs(/path/to/directory)



Array Creation



Maximising CPU Usage



Memory Management



Making Life A Bit Easier
import sys 
sys.exit() 

sys.stdout.flush() 
sys.argv 

a = [i**2 for i in b] 
a = 1 if b > 0 else 0

lambda a, b: a+b

nohup python script.py >& log.log &

if __name__ == ‘__main__’: 
useful for differentiating between a 
python script imported into another, 
and a script run from the terminal



Conclusions
• Avoid writing pure-python functions of your own to do basic (or even 

intermediate) mathematical/graphical things unless absolutely necessary


• Numpy arrays can be thrown around quite a lot, slice liberally (while 
ensuring views rather than copies where possible) to manipulate arrays 
making code easier to understand.


• Matplotlib can do a lot of very fancy things if needed - or just save a set 
of paper-worthy settings and forget.


• Python is fantastic for file IO and N-D array stacking.


• Multiple options to minimise memory usage and maximise parallelisation.


• Easier to ask forgiveness than permission.



Conclusions

Read the Documentation.



Conclusions

No, really, read the documentation.



Conclusions

Seriously, it
 probably already exists, you should read the documentation.



Conclusions

Read the documentation.



Conclusions

Read th
e 

documentatio
n.



Conclusions
• Avoid writing pure-python functions of your own to do basic (or even 

intermediate) mathematical/graphical things unless absolutely necessary


• Numpy arrays can be thrown around quite a lot, slice liberally (while 
ensuring views rather than copies where possible) to manipulate arrays 
making code easier to understand.


• Matplotlib can do a lot of very fancy things if needed - or just save a set 
of paper-worthy settings and forget.


• Python is fantastic for file IO and N-D array stacking.


• Multiple options to minimise memory usage and maximise parallelisation.


• Easier to ask forgiveness than permission.


