Robust Cross-Matches with Herschel (and beyond): **Overcoming the Effect of Unresolved Contaminant Objects and False Positive Matches**

- Tom J Wilson (he/him) and Tim Naylor t.j.wilson@exeter.ac.uk University of Exeter
- National Astronomy Meeting 2023 10 Years After Herschel, 6/Jul/23

"Simple" Cross-Matching with Herschel

Declination / degrees

$dp(r|id) = r \times e^{-r^{2}/2} dr.$ $dp_{id} = Qr \exp\left(\frac{-r^{2}}{2}\right) dr. \quad dp_{uo} = 2\lambda r dr$ $dp(r|c) = 2\lambda r \times e^{-\lambda r^{2}} dr$ $LR(r) = dp(r|id)/dp(r|c) = \frac{1}{2\lambda} \exp\left\{\frac{r^{2}}{2}(2\lambda - 1)\right\} \quad LR(r) = \frac{dp_{id}}{dp_{uo}} = \frac{Q \exp\left(-r^{2}/2\right)}{2\lambda}$ Wolstencroft et al. (1986) <u>The "Reliability" — Sutherland & Saunders (1992)</u> $R_{j} = \frac{L_{j}}{\sum_{i} L_{i} + (1 - Q)} \qquad L = \frac{q(m, c) f(x, y)}{n(m, c)}$ Herschel launch Non-refereed 20 Cita

2010

Year

2015

2020

2005

2000

1995

Probabilistic Cross-Matching The Likelihood Ratio $dp(r|id) = r \times e^{-r^{2}/2} dr.$ $dp_{id} = Qr \exp\left(\frac{-r^{2}}{2}\right) dr. \quad dp_{uo} = 2\lambda r dr$ $LR(r) = dp(r|id)/dp(r|c) = \frac{1}{2\lambda} \exp\left\{\frac{r^2}{2}(2\lambda - 1)\right\} \quad LR(r) = \frac{dp_{id}}{dp_{uc}} = \frac{Q\exp(-r^2/2)}{2\lambda} \quad \text{Wolstencroft et al. (1986)}$ <u>The "Reliability" – Sutherland & Saunders (1992)</u> $R_{j} = \frac{L_{j}}{\sum_{i} L_{i} + (1 - Q)} \qquad L = \frac{q(m, c) f(x, y)}{n(m, c)}$ $L = \frac{q(m, c) f(x, y)}{n(m, c)}$ Herschel launch degrees One assumption made in all of these works: positional errors of sources are Gaussian! Declin $f(r) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-r^2}{2\sigma^2}\right)$ pos pos / 2010 2000 2005 1995 2015 2020 **Right Ascension / degrees** Year Tom J Wilson @onoddil

Probabilistic Cross-Matching: the AUF

"Probability of True Position being this far from the Measured Position"

Gaussian AUF Medium latitude Low latitude

2.5

Gaussian AUF Medium latitude Low latitude

2.5

Additional Components of the AUF (and any other systematic – e.g. proper motions, cf. Wilson 2023, RASTI)

Gaussian AUF Medium latitude Low latitude

The Perturbation Component of the AUF

The Perturbation Component of the AUF

Conclusions

- ullet
 - effects of perturbation due to blended sources reduce false -ves!
 - ullet
- expected fraction of sub-mm/far-IR counterparts to shorter-wavelength datasets
- ulletcontaminant sources and rejection of interloper objects using photometric information

 - \bullet you need matched (to LSST or otherwise)!

Our cross-match algorithms include two key elements to avoid issues with crowded & confused data • A generalised approach to the Astrometric Uncertainty Function allows for the full inclusion of the

Use of (two-sided) photometry to sort out multiplicity of higher resolution data — reduce false +ves!

Missing extra perturbation from blended sources has the effect of increasing $1 - Q_0$ and decreasing

Software package macauff developed to cross-match catalogues, including the effect of unresolved Developed through Rubin/LSST:UK, with plans to match LSST to Gaia, WISE, VISTA, SDSS, ... We have compute time to cross-match datasets — let me know your favourite combo, and what

Will be able to handle the increased effects of perturbation due to unresolved sources in the nextgeneration of far-IR data — crucial as source densities and sensitivities increase in future surveys

> Wilson & Naylor, 2017, MNRAS, 468, 2517 Wilson & Naylor, 2018a, MNRAS, 473, 5570 Wilson & Naylor, 2018b, MNRAS, 481, 2148 Wilson, 2022, RNAAS, 6, 60 Wilson, 2023, RASTI, 2, 1

