Generalising the Astrometric Uncertainty Function in the Era of LSST

Crucial to the Bayesian cross-matching of photometric catalogues - the identification of sources detected in both (or all) datasets - is the maths describing the "counterpart likelihood".

The probability that two sources in two catalogues are counterparts given the sky separation between them is the convolution of their $\int^{+\infty}$ respective Astrometric Uncertainty Functions (AUFs) (h).
$g\left(x_{k}, y_{k}, x_{l}, y_{l}\right)=\iint h_{\gamma}\left(x_{0}-x_{k}, y_{0}-y_{k}\right) h_{\phi}\left(x_{l}-x_{0}, y_{l}-y_{0}\right) p\left(x_{0}, y_{0}\right) \mathrm{d} x_{0} \mathrm{~d} y_{0}$ $\int_{-\infty}=N_{\mathrm{c}} \times\left(h_{\gamma} * h_{\phi}\right)\left(\Delta x_{k l}, \Delta y_{k l}\right) \quad$ Wilson \& Naylor (2018a)
This function is typically assumed to be Gaussian (e.g., Budavári \& Szalay 2008; Naylor et al. 2013; Wolstencroft et al. 1986; Pineau et al. 2017), but it does not need to be.

$$
\begin{aligned}
& B=\frac{2}{\sigma_{1}^{2}+\sigma_{2}^{2}} \exp \left[-\frac{\psi^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right] e^{-0.5\left(r / \sigma_{39}\right)^{2}} \\
& d p_{\mathrm{id}}=Q r \exp \left(\frac{-r^{2}}{2}\right) d r . \\
& \frac{\exp \left\{-\frac{1}{2} \sum_{i=1}^{n} Q_{i}(\boldsymbol{p})\right\}}{(2 \pi)^{n} \prod_{i=1}^{n} \sqrt{\operatorname{det} \bar{V}_{i}}} \mathrm{~d} \boldsymbol{p}
\end{aligned}
$$

Removing the restriction of Gaussian AUFs allows
for the inclusion of components other than the astrometric position centroiding in the AUF, such as perturbations due to blended sources, or unknown proper motions (Wilson \& Naylor 2018b).
As these additional AUF terms may not be analytic,

$$
\begin{aligned}
& F(\rho)=\mathscr{F}(f(x)) \\
& k g(x)=\mathscr{F}^{-1}(F \cdot G)
\end{aligned}
$$ we have to turn to non-analytic solutions for the fast and accurate calculation of these counterpart likelihoods, using convolution theorem.

The generalised AUF will be crucial for the faint, crowded LSST sky, much as it is for the WISE catalogue, suffering similar crowding at its completeness limit (Wilson \& Naylor, 2017).

