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Exoplanet Transmission Spectra
(Also, emission spectra!)

H. Wakeford, stellarplanet.org

Wakeford et al. (2020)
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What’s in an Exoplanet Atmosphere?

Lewis et al. (2020)

A definitely non-exhaustive 
list of model fitting methods: 
• 1-D models 
• 3-D models, GCMs 
1. Equilibrium 
2. Disequilibrium 
A.Chemistry models 
B.Clouds/Hazes 

Self-consistent models 
Parametric models 
GPs 
Forward modelling 

Grid search 
Retrievals 

Nested sampling 
MCMC, Monte Carlo
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What’s the best model fit to the data?
(And what do “best” and “model” mean anyway?)

Likelihood Prior

Evidence

MacDonald & Madhusudhan (2017)

Evidence either comes from the sampled posterior (e.g. nested 
sampling, MCMC) or can be derived from the maximum 

likelihood (e.g. forward models, grid search) through the BIC 
and AIC: Bayesian/Akaike Information Criterion

BIC ≡ k ln(n) − 2 ln(L̂)
AIC ≡ 2k − 2 ln(L̂)

Number of parameters

Number of data points

Maximum value of the 
likelihood function

Maximum evidence is used to select the best model (from a suite of 
models) quite often in exoplanet characterisation literature

Model in a suite of models (full chemistry, no H2O, no CH4, etc.)
Parameterisation of a given model 
(T-P profile, log(XH2O), radius, etc.)
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The Need for “Goodness of Fit”
The (log-)evidence provides a relative ranking of each model in a 

given suite; a Bayesian classifier as opposed to a probability model.

+Easy to compute 
+Not sensitive to exact parameters 
+Obvious to interpret 
- No absolute grounding 
- Does not inform whether any model explains the data

Important that the posterior probability is also 
computed to fully interpret the data fit.

Bayes factors compare relative evidence of two models: 

 (neglecting priors)B01 =
Z(D |H0)
Z(D |H1)

E.g. Trotta (2008), Benneke & Seager (2013), after 
Kass & Rafferty (1995), again after Jeffreys (1961)

Which is preferable: model with higher 
evidence, or one with lower evidence but 

with a better fit of a single parameterisation?
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The Chi-Squared Statistic
Ignoring priors, the (log-)likelihood can be expressed as the chi-squared statistic.

Degrees of freedom (DoF), ν
The null hypothesis, H0, describes the idea that chance alone is responsible 

for one’s results — in this case, the normalised residuals to the fit.

Q =
n

∑
i

( f(xi) − yi)2

σ2
i

∼ χ2(n − k)
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for one’s results — in this case, the normalised residuals to the fit.

We can ask what the probability 
of getting a (reduced) chi-

squared value equal or smaller 
than  purely by chance is, given 
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∑
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Note that as  increases, the 
acceptable confidence 

interval around “reduced chi-
squared of one” decreases!

ν

Always quote the 
(reduced) chi-squared 

AND degrees of freedom, 
and consider the rejection 

of the null hypothesis

We can ask what the probability 
of getting a (reduced) chi-

squared value equal or smaller 
than  purely by chance is, given 
by the cumulative integral of the 

chi-squared distribution:

χ2
ν
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The Bayesian Posterior Probability

p(Mi |D) =
Z(D |Mi) π(Mi)

∑i Z(D |Mi) π(Mi)

Evidence-based posterior Maximum likelihood-based posteriorE.g. Gibson (2014)

p(Mi |D, ̂θi) =
p(D | ̂θi, Mi) p( ̂θi |Mi)π(Mi)

∑i p(D | ̂θi, Mi) p( ̂θi |Mi)π(Mi)
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The Bayesian Posterior Probability

Jaynes (2003), “Probability Theory: The Logic of Science" 
The “null hypothesis” could be treated as a “fire extinguisher”, “to be held in abeyance until needed”. 
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Z(D |Mi) = ∫all θ
ℒ(D |θ, Mi)π(θ |Mi) dθ + ℱ′ 

or in the parameterisation of a single model:

E.g. Gibson (2014)

p(H0 |D) =
ℱ
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The Chi-Squared Statistic

The null hypothesis, H0, describes the idea that chance alone is responsible 
for one’s results — in this case, the normalised residuals to the fit.

P(χ2 ≤ x) = F(x; k) =
γ(ν/2, x/2)

Γ(ν/2)
Q =

n

∑
i

( f(xi) − yi)2

σ2
i

∼ χ2(n − k)

Always quote the 
(reduced) chi-squared 

AND degrees of freedom, 
and consider the rejection 

of the null hypothesis
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WFC3/UVIS and HAT-P-41b

Previous typical DoFs of  ~35 — 
JWST will have hundreds of DoF!

UVIS Wakeford et al. (2020);

STIS Sheppard et al. (2020) 

Lewis et al. (2020)
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Model-Data Tensions

Lewis et al. (2020)

Reduced chi-squared of “only” 1.5 rejected at 
>99% probability with increase in dataset size!
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JWST will have hundreds of data points, not tens

Bean et al. (2018), ERS for JWST. Credit: M. Line

JWST: An Analysis Turning Point
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What’s the best model fit to the data?

• “Model” versus “parameterisation” important; we probably care about parameters, not model choice 
• Model comparison a shortcut for comparing individual chemical abundances, e.g. 

• Evidence ratios assume at least one model is correct 

• Chi-squared CDF or “null hypothesis” can inform on the probability that given model and 
parameterisation are probable explanations of the dataset, instead of just most likely of choices 

• What are the chances that something else is needed to explain these data? 
• Differences can be in unexplained data reduction systematics or missing model physics, e.g. 

• Caution must be given when interpreting Bayesian classifier relative model rankings with increasing 
precision and numbers of data points — especially for JWST 

• Say “H2O favoured over its non-inclusion at the 5-sigma level” and “These parameters and 
model reject the null hypothesis of random chance residuals with 60% probability” 

• Always quote the chi-squared, the degrees of freedom, and the probability of chi-squared!

Conclusions

(And what do “best” and “model” mean anyway?)


