Solving the Catalogue Cross-Match Problem in the Era of LSST

Southampton, 15/10/24

Science and Technology **Facilities Council**

Tom J Wilson (he/him) and Tim Naylor t.j.wilson@exeter.ac.uk University of Exeter

What's In A Photometric Catalogue? (Ironically, it's half astrometry!)

WISE - Wright et al. (2010)

D	Position (deg)	Uncertainty (arcsecond)	Brightness (mag)	Uncertainty (mag)
	218.4763	0.073	14.94	0.04
	218.3951	0.217	20.32	0.15
			Torr	n J Wilson @onodo

Cross-Matching and Counterpart Assignment

ID A	ID 1	A magnitude	Magni
A J	CAT1 1	14.94	17.
•••			

ID A	ID 1	A magnitude	Magni
A J	NULL	14.94	NU
NULL	CAT1 1	NULL	17.

WISE - Wright et al. (2010) TESS - Ricker et al. (2015)

Tom J Wilson @onoddil

.53

. .

Technology Abounds

- Ancient lists of stars (Ptolemy, 150; Brahe, 1598)
- Galileo invents the telescope (1610)
- Greenwich Observatory catalogues (e.g. Bradley, 1798)
- Astrophotography invented (Bond & Whipple, 1850)
- Harvard Observatory surveys (8th magnitude, 1882-1886)
- Astrographic Chart (11th magnitude; 1887-1962)
- Carte Du Ciel (14th magnitude; 1880s-never finished)
- Invention of the CCD (Boyle & Smith, 1970)
- InfraRed detector invented (Forrest et al. 1985)
- 4- and 5-m class telescopes (1970s-1980s; e.g. LAT, MMT, UKIRT, CFHT, WHT)
- Space Telescopes (1980s-2010s; e.g. IRAS, ISO, AKARI, WISE, Spitzer)
- All-sky ground-based surveys (e.g. 2MASS, 1997-2001; SDSS, 2000-; Pan-STARRS, 2010-).

X-ray Detections: Hunting for Sco X-1

Giacconi, Gursky, & Waters (1964)

Sandage et al. (1966)

The Brightest Star in the Sky

Naylor, Charles, & Longmore (1991)

"...X-ray sources are rare events; bright optical sources are also rare events, so the observation of an X-ray source and a bright optical source in the same region of the sky is considered a non-random event" Fotopoulou et al. (2016)

2RE023843-525708 J

Mason et al. (1995)

"Traditional" Cross-Matching

The Vera C. Rubin Observatory's LSST

NOIRLab/NSF/AURA/F. Bruno

The Looming Problem With LSST

The Looming Problem With LSST

Nearest-neighbour matching *will not* work in the era of Rubin!

J. F. W. Herschel, "Quetelet on Probabilities", 1850

1) p(x) decreases as x increases 2) p(x and y) = p(x)p(y)3) $p(x) = p(-x) \Rightarrow p(x^2)$

J. F. W. Herschel, "Quetelet on Probabilities", 1850

1) p(x) decreases as x increases 2) p(x and y) = p(x)p(y)3) $p(x) = p(-x) \Rightarrow p(x^2)$

J. F. W. Herschel, "Quetelet on Probabilities", 1850

1) p(x) decreases as x increases 2) p(x and y) = p(x)p(y)3) $p(x) = p(-x) \Rightarrow p(x^2)$

 $p(d^2) = p(x^2 + y^2) = p(x^2)p(y^2)$

J. F. W. Herschel, "Quetelet on Probabilities", 1850

Centroid Positions and Uncertainties

6

$$p(D | M) \propto \frac{\exp\left(-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^T \boldsymbol{\Sigma}^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)^T \boldsymbol{\Sigma}^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)^T \boldsymbol{\Sigma}^{-1}\right)}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}}$$

$$\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \boldsymbol{\mu} = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_x^2 & \rho \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y \end{pmatrix}$$

$$g(x, y, \sigma) = (2\pi\sigma^2)^{-1} \exp\left(-\frac{1}{2}\frac{x^2 + y^2}{\sigma^2}\right)$$

Probabilistic Cross-Matching The Likelihood Ratio $dp(r|id) = r \times e^{-r^{2}/2} dr.$ $dp_{id} = Qr \exp\left(\frac{-r^{2}}{2}\right) dr. \quad dp_{uo} = 2\lambda r dr$ $dp(r|c) = 2\lambda r \times e^{-\lambda r^{2}} dr$ $LR(r) = dp(r|id)/dp(r|c) = \frac{1}{2\lambda} \exp\left\{\frac{r^{2}}{2}(2\lambda - 1)\right\} \quad LR(r) = \frac{dp_{id}}{dp_{uo}} = \frac{Q \exp\left(-r^{2}/2\right)}{2\lambda}$ Wolstencroft et al. (1986)

Naylor, Broos, & Feigelson (2013)

 $\underline{Xc(m_i)g(\Delta x_i,\Delta y_i)}$ $Nf(m_i)$ $P(i) = \frac{NJ(m_i)}{1 - X + \sum_j \frac{Xc(m_j)g(\Delta x_j, \Delta y_j)}{Nf(m_j)}}$

$$p(D|H) = \int p(\boldsymbol{m}|H) \prod_{i=1}^{n} p_i(\boldsymbol{x}_i|\boldsymbol{m}, H) d^3 \boldsymbol{m}$$

$$p(D|K) = \prod_{i=1}^{n} \left[\int p(\boldsymbol{m}_i|K) p_i(\boldsymbol{x}_i|\boldsymbol{m}_i, K) d^3 \boldsymbol{m}_i \right]$$

$$B(H, K|D') = \frac{\int p(\boldsymbol{\eta}|H) \prod_{i=1}^{n} p_i(\boldsymbol{g}_i|\boldsymbol{\eta}, H) d^r \boldsymbol{\eta}}{\prod_{i=1}^{n} \left[\int p(\boldsymbol{\eta}_i|K) p_i(\boldsymbol{g}_i|\boldsymbol{\eta}_i, K) d^r \boldsymbol{\eta}_i \right]}$$
Budavári & Szalay (2008)
Includes SED model fitting to all sources

(Apologies for the lack of nice figures in this paper!)

Nearest neighbour or brightest neighbour: one-to-one, either astrometry OR photometry Likelihood ratio: one-to-one matches, mostly just astrometry (e.g., Wolstencroft et al. 1986) Reliability: One-to-many matches, uses photometry from one dataset (e.g. Naylor et al. 2013) Budavári & Szalay (2008): one-to-one-to-one-to... matches, include SED fitting e.g. Pineau et al. (2017): many-to-many-to-many-to... matches, no photometry implemented

- Nearest neighbour or brightest neighbour: one-to-one, either astrometry OR photometry Budavári & Szalay (2008): one-to-one-to-one-to... matches, include SED fitting e.g. Pineau et al. (2017): many-to-many-to-many-to... matches, no photometry implemented

Likelihood ratio: one-to-one matches, mostly just astrometry (e.g., Wolstencroft et al. 1986) Reliability: One-to-many matches, uses photometry from one dataset (e.g. Naylor et al. 2013)

One assumption made in all of these works: source positions uncertainties are Gaussian!

 $Xc(m_i) g(\Delta x_i, \Delta y_i)$ $dp(r|id) = r \times e^{-r^{2}/2} dr. \quad P(i) = \frac{\frac{XC(m_{i})g(\Delta x_{i}, \Delta y_{i})}{Nf(m_{i})}}{1 - X + \sum_{j} \frac{XC(m_{j})g(\Delta x_{j}, \Delta y_{j})}{Nf(m_{j})}} \quad p(D|H) = \int p(m|H) \prod_{i=1}^{n} p_{i}(x_{i}|m, H) d^{3}m$

- Nearest neighbour or brightest neighbour: one-to-one, either astrometry OR photometry Likelihood ratio: one-to-one matches, mostly just astrometry (e.g., Wolstencroft et al. 1986) Reliability: One-to-many matches, uses photometry from one dataset (e.g. Naylor et al. 2013) Budavári & Szalay (2008): one-to-one-to-one-to... matches, include SED fitting e.g. Pineau et al. (2017): many-to-many-to-many-to... matches, no photometry implemented
- Wilson & Naylor (2017, 2018a, 2018b), Wilson (2022, 2023), and so on: a many-to-many match with data-driven photometric probabilities also describes a flexible approach to positional "errors," vital for future surveys

Photometry: Rejecting False Positives

Gaia DR2 - Gaia Collaboration, Brown A. G. A., et al. (2018)

Photometry: The Counterpart Distribution

Naylor, Broos, & Feigelson (2013); Wilson & Naylor (2018a)

Photometry: The Counterpart Distribution

The Astrometric Uncertainty Function

The Astrometric Uncertainty Function

Reasons for large separations:

- 1) proper motions (e.g. AllWISE Supplement 6.4, Cutri et al. 2012) — no, TGAS provided for all sources
- 2) false matches no, 0.1% chance of random match within 0.5 arcseconds
- 3) What else could it be?

Wilson & Naylor (2017) WISE - Wright et al. (2010)

The AUF: Crowding

The AUF: Crowding

Wilson & Naylor (2017)

The AUF: Crowding

Wilson & Naylor (2017)

The AUF: Crowding

Wilson & Naylor (2017)

The AUF: Crowding 0.15 30

Wilson & Naylor (2017)

Wilson & Naylor (2018b) WISE - Wright et al. (2010) Gaia DR2 - Gaia Collaboration, Brown A. G. A., et al. (2018)

"Were the succession of stars endless... there could be absolutely no point, in all that background, at which would not exist a star."

– Edgar Allan Poe, Eureka (1848)

The AUF: Perturbation

Pure WISE position

The AUF: Perturbation

To WISE contaminant

•
•

Wilson & Naylor (2017) Wilson & Naylor (2018b) *WISE* - Wright et al. (2010) *Gaia* DR2 - Gaia Collaboration, Brown A. G. A., et al. (2018)

The AUF: Perturbation

The AUF: Position (Un)Certainty

The AUF: Position (Un)Certainty

 $dp(r|id) = r \times e^{-r^2/2} dr.$

de Ruiter, Willis, & Arp (1977)

Naylor, Broos, & Feigelson (2013)

The AUF: Position (Un)Certainty

Probability of two sources having their on-sky separation given the hypothesis they are counterparts $G(x_k - x_l, y_k - y_l) \equiv (h_{\gamma} * h_{\phi})(\Delta x_{kl}, \Delta y_{kl}) =$ $\iint h_{\gamma}(x_0 - x_k, y_0 - y_k) h_{\phi}(x_l - x_0, y_l - y_0) \, \mathrm{d}x_0 \, \mathrm{d}y_0$ Wilson & Naylor (2018a) Δy_{kl} Tom J Wilson @onoddil

Probability of two sources having their on-sky separation given the hypothesis they are counterparts $G(x_k - x_l, y_k - y_l) \equiv (h_{\gamma} * h_{\phi})(\Delta x_{kl}, \Delta y_{kl}) =$ $\iint h_{\gamma}(x_0 - x_k, y_0 - y_k) h_{\phi}(x_l - x_0, y_l - y_0) \, \mathrm{d}x_0 \, \mathrm{d}y_0$ Wilson & Naylor (2018a) Δy_{kl} Tom J Wilson @onoddil

Probability of two sources having their on-sky separation given the hypothesis they are counterparts $G(x_k - x_l, y_k - y_l) \equiv (h_{\gamma} * h_{\phi})(\Delta x_{kl}, \Delta y_{kl}) =$ $\iint h_{\gamma}(x_0 - x_k, y_0 - y_k) h_{\phi}(x_l - x_0, y_l - y_0) \, \mathrm{d}x_0 \, \mathrm{d}y_0$ Wilson & Naylor (2018a) Δy_{kl} Tom J Wilson @onoddil

Probability of two sources having their on-sky separation given the hypothesis they are counterparts $G(x_k - x_l, y_k - y_l) \equiv (h_{\gamma} * h_{\phi})(\Delta x_{kl}, \Delta y_{kl}) =$ $h_{\gamma}(x_0 - x_k, y_0 - y_k)h_{\phi}(x_l - x_0, y_l - y_0) dx_0 dy_0$ Wilson & Naylor (2018a) Δy_{kl} Tom J Wilson @onoddil

Probability of two sources having their on-sky separation given the hypothesis they are counterparts $G(x_k - x_l, y_k - y_l) \equiv (h_{\gamma} * h_{\phi})(\Delta x_{kl}, \Delta y_{kl}) =$ $h_{\gamma}(x_0 - x_k, y_0 - y_k)h_{\phi}(x_l - x_0, y_l - y_0) dx_0 dy_0$ Wilson & Naylor (2018a) Δy_{kl} Tom J Wilson @onoddil

(Previously, literature assumed that e.g.

$$G(\Delta x, \Delta y, \sigma) = (2\pi\sigma^2)^{-1} \exp\left(-\frac{1}{2}\frac{\Delta x^2 + \Delta y^2}{\sigma^2}\right)$$
where $\sigma^2 = \sigma_{\gamma}^2 + \sigma_{\phi}^2$

The Astrometric Uncertainty Function

The AUF does not need to, and in fact quite often should *not*, be Gaussian!

Radius / arcsecond

Gaussian AUF Medium latitude Low latitude

If this effect was not taken into account, we would be incorrectly led to believe 50% of Gaia-WISE* sources were not matches!

*"Euclid-Rubin"

6

Wilson & Naylor (2018b); also see Wilson (2022, RNAAS)

Wilson & Naylor (2018b); also see Wilson (2022, RNAAS)

The Rubin AUF: Extra-Galactic, Transients

Wilson & Naylor (2018b); also see Wilson (2022, RNAAS)

Unknown Proper Motions

Wilson (2023, RASTI, 2, 1) Gaia eDR3 - Gaia Collaboration et al. (2021, A&A, 649, A1)

Differential Chromatic Refraction

e.g. gbdes, Bernstein et al. (2017)

 $\Delta \mathbf{x}^w = K_b c \tan z \, \hat{\mathbf{p}}$

Unknown/uncertain per-band (b) scaling factor

Unknown/uncertain photometric colour *c*

Photometric Effects of Crowding

Wilson & Naylor (2018b)

"Extra flux" has an impact on derived proper motions and parallaxes, and IR excesses!

Resolving Contaminants

Spitzer - Werner et al. (2004) IRAC - Fazio et al. (2004) WISE - Wright et al. (2010) Wilson & Naylor (2018b)

Modelling Crowded-Field Flux Brightening

High SNR PSF or Aperture Photometry

(This raises questions about the validity of quoting photometric statistical precisions if objects are systematically biased, and SED fitting in general in crowded fields)

Wilson & Naylor (2018b; in prep.) Plewa & Sari (2018)

Low SNR PSF Photometry

Photometry: Contamination Rates and Amounts

Typical, single visit images in near-Bulge regions of the Plane will have:

- 50% of objects with at least one >1% flux object in their PSF
- 20% of objects with a >10% relative flux object contaminating them
- an average 10% total "extra" flux

(the Bulge will be much more crowded! Nearestneighbour matching won't work there, but neither will probabilistic matching without taking this effect into account...)

TRILEGAL - Girardi et al. (2005) Wilson & Naylor (2018b)

The Likelihood Ratio Space

Open Source Code: macauff

Matching Across Catalogues using the Astrometric Uncertainty Function and Flux

https://github.com/macauff/macauff

(Points if you know your tartans!)

Verifying Astrometry: Accounting For Systematics

In each sightline (10s of sq deg for good bright source counting N):

- **Cross-match your high angular resolution, high astrometric** precision data to LSST to obtain separation distributions
- **Create systematics model for all non-centroid astrometric** 2. components of uncertainty
- Fit full AUF to data, allowing centroid Gaussian uncertainty to be fit 3.
- **Repeat for each brightness (and effectively different astrometric** 4. uncertainty)
- - **Derive fit-quoted astrometric uncertainty relations**

5.

Α.

Β.

С.

D.

Ε.

Pure Gaussian

Offsets

1.0

1.2

0.2

0.0

0.4

0.6

0.8

Radius / arcsecond

Create crowding-caused perturbation model, for example: Verify model source count densities match observed data Randomly draw perturbing sources within your PSF ("darts at a dartboard") **Repeat lots of times to get a distribution of perturbation offsets Repeat however many times you have different perturbation algorithms Combine your perturbation algorithms**

In each sightline (10s of sq deg for good bright source counting N):

- precision data to LSST to obtain separation distributions
- 2. components of uncertainty
- Fit full AUF to data, allowing centroid Gaussian uncertainty to be fit 3.
- 4. uncertainty)
- **Derive fit-quoted astrometric uncertainty relations**

Verifying Astrometry: Fitting Centroid Uncertainty

8

6

arcsecond

PDF

In each sightline (10s of sq deg for good bright source counting N):

- **Cross-match your high angular resolution, high astrometric** precision data to LSST to obtain separation distributions
- **Create systematics model for all non-centroid astrometric** components of uncertainty
- Fit full AUF to data, allowing centroid Gaussian uncertainty to be fit
- **Repeat for each brightness (and effectively different astrometric** 4. uncertainty)
- **Derive fit-quoted astrometric uncertainty relations**

For each magnitude (uncertainty) slice in a given sightline, combine centroid uncertainty (Gaussian) and other AUF components (empirical) and fit for best-fitting sigma-value.

$$h_{\gamma} = h_{\gamma,\text{centroiding}} * h_{\gamma,\text{perturbation}} * \dots$$
$$g(\Delta x, \Delta y, \sigma) = (2\pi\sigma^2)^{-1} \exp\left(-\frac{1}{2}\frac{\Delta x^2 + \Delta y^2}{\sigma^2}\right)$$

Also include false positive match rate (F) in case simple match case was not perfect

WISE - Wright et al. (2010) Gaia DR2 - Gaia Collaboration, Brown A. G. A., et al. (2018)

Verifying Astrometry: Characterisation

In each sightline (10s of sq deg for good bright source counting N):

- Cross-match your high angular resolution, high astrometric precision data to LSST to obtain separation distributions
- **Create systematics model for all non-centroid astrometric** components of uncertainty
- 3. Fit full AUF to data, allowing centroid Gaussian uncertainty to be fit
- Repeat for each brightness (and effectively different astrometric 4. uncertainty)
- **Derive fit-quoted astrometric uncertainty relations**

Fit for
$$y = \sqrt{(mx)^2 + n^2}$$
 (or, optionally,

y = mx + n) to account for simple systematic

bias *n* missing and compensating scaling factor *m* at lower SNR data

Ь astrometric 0.10 Fit

w To Use Our Cross-Matches (Or, how this impacts you on a day-to-day basis)

Example columns:

- Designations of the two sources (e.g., WISE J... and Gaia EDR3...)
- RA and Dec (or Galactic I/b) of the two sources
- Magnitudes (corrected for necessary effects, such as e.g. Gaia) in all bandpasses for both objects
- Match probability probability of the most likely permutation (see equation 26 of Wilson & Naylor 2018a)
- Xi Astrometric likelihood ratio (just position match/non-match comparison; see eq38 of WN18a)
- Probability of sources having blended contaminant above e.g. 1% relative flux

We will provide a two match runs per catalogue pair match: one with, and one without, the photometry considered, to allow for the recovery of sources with "weird" colours but otherwise agreeable astrometry

Three tables per cross-match: merged catalogue dataset, and 2x non-match dataset (one per catalogue)

• Eta - Photometric likelihood ratio (counterpart vs non-match probability, just for brightnesses; see eq37 of WN18a) • Average contamination - simulated mean (percentile) brightening of the two sources, based on number density of catalogue

Why Use Macauff's Cross-Matches?

0) Getting cross-matches, even for "well behaved" fields 1) Finding "odd" objects, either using the inclusion vs non-inclusion of the photometry in the two match runs, or via the likelihood ratio space — separately-planned "real time" matching service for transient objects

2) Removing e.g. IR excess or correcting for extinction-like crowding brightening, through Average Contamination; crucial for "1% photometry" in both precision *and* accuracy
3) Recovering additional sources missed by other match services — either in crowded fields (we recover up to twice as many *Gaia-WISE* matches than the *Gaia* best neighbour matches), or with our extension to unknown proper motion modelling as an extra systematic

Conclusions Blended star contamination causes positional shifts, now modelled robustly for the first time in the AUF

- Symmetric data-driven photometric likelihood now possible
- LSST will suffer of order 10% flux contamination in the future
 - Important for extinction/distance; "1% photometry"?
 - Modelling of statistical flux contamination allows for the recovery of "true" fluxes
- LSST will suffer at least one extra source (possibly up to 10!) in each 2" matching circle
 - Need to use astrometric uncertainty to reduce length scale over which matches are considered
 - Can use photometry in catalogues to break these false match degeneracies
- Can include other effects, like unknown proper motions or DCR, easily within AUF match framework
- High dynamic range matches must account for differential crowding matching to ancillary or historic data
- Accounting for these systematics, we can *confirm* quoted catalogue astrometric uncertainties in more extremes than would otherwise be possible, avoiding mistakenly thinking the pipeline values are "wrong"
- Upcoming LSST:UK cross-match service macauff let me know your thoughts/needs/hopes/dreams

LSST:UK Consortium

https://github.com/macauff/macauff

Wilson & Naylor (2017, MNRAS, 468, 2517); Wilson & Naylor (2018a, MNRAS, 473, 5570); Wilson & Naylor (2018b, MNRAS, 481, 2148); Wilson (2022, RNAAS); Wilson (2022, RASTI, 2, 1); Wilson & Naylor (in prep.) — more AUF-related improvements!

(sources per PSF circle ~ 10^-6 sources per mag per sq deg)

Wilson & Naylor (2018b) TRILEGAL - Girardi et al. (2005)

(sources per PSF circle ~ 10^-6 sources per mag per sq deg)

Wilson & Naylor (2018b) TRILEGAL - Girardi et al. (2005)

(sources per PSF circle ~ 10^-6 sources per mag per sq deg)

Wilson & Naylor (2018b) TRILEGAL - Girardi et al. (2005)

(sources per PSF circle ~ 10^-6 sources per mag per sq deg)

Wilson & Naylor (2018b) TRILEGAL - Girardi et al. (2005)

WISE - Wright et al. (2010) Gaia DR2 - Gaia Collaboration, Brown A. G. A., et al. (2018) Wilson & Naylor (2018b) TRILEGAL - Girardi et al. (2005)

