Enabling Rubin Science with Robust Cross-Matches in the Crowded LSST Sky

Tom J Wilson (he/him) and Tim Naylor
With George Beckett, Mike Read, and Dominic Sloan-Murphy
t.j.wilson@exeter.ac.uk
University of Exeter
TVS Software Workshop, 9-10/Mar/23

University

Photometric Observations

Photometric Observations

"Simple" Cross-Matching

The Problem With Vera C. Rubin Obs.'s LSST

The Problem With Vera C. Rubin Obs.'s LSST

The Problem With Vera C. Rubin Obs.'s LSST

Probabilistic Cross-Matching

Probability of two sources having
their on-sky separation given the hypothesis they are counterparts

Probability of sources having their brightnesses given they are unrelated to one another ("field stars")

Probability of sources having their brightnesses given they are counterparts

Including Magnitude Information

Probabilistic Cross-Matching

Match Separation Probability

$$
\begin{gathered}
d p_{\text {id }}=Q r \exp \left(\frac{-r^{2}}{2}\right) d r . \quad B=\frac{2}{\sigma_{1}^{2}+\sigma_{2}^{2}} \exp \left[-\frac{\psi^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right] \\
\text { Wolstencroft et al. (1986) } \quad \text { Budavári \& Szalay (2008) }
\end{gathered}
$$

$$
e^{-0.5\left(r^{2} / \sigma_{39}^{2}\right)}
$$

Naylor, Broos, \& Feigelson (2013)

Extra-galactic Effects of Crowding

Why Use Our Cross-Matches?

- Getting cross-matches, even for "well behaved" fields
- Finding "odd" objects, either using the inclusion vs non-inclusion of the photometry in the two match runs, or via the likelihood ratio space - planned "real time" matching service for transient objects
- Removing e.g. IR excess or correcting for extinction-like crowding brightening, through Average Contamination from matching process; crucial for removing completely unknown crowding of catalogues using aperture photometry
- Recovering additional sources missed by other match services - either in crowded fields (we recover up to twice as many Gaia-WISE matches than the Gaia best neighbour matches), or with our in-progress extension to unknown proper motion modelling
- We will provide a cross-match table service through the LSST:UK DAC and RSP

Three tables per cross-match: merged catalogue dataset, and 2x non-match dataset (one per catalogue)

WISE $\quad W 1 / \mathrm{mag}$

[Astrometric Ratio] $\xi \equiv \log _{10}\left(\frac{N_{c} G}{N_{\gamma} N_{\phi}}\right)$

Example columns from cross-match service:

- Designations of the two sources (e.g., WISE J... and Gaia DR3...) - RA and Dec (or Galactic l/b) of the two sources
- Magnitudes (corrected for necessary effects, such as e.g. Gaia) in all bandpasses for both objects
- Re-derived "centroid" uncertainty, if necessary due to e.g. missing terms or measurement bias
- Match probability - probability of the most likely permutation (see equation 26 of Wilson \& Naylor 2018a)
- Eta - Photometric likelihood ratio (counterpart vs non-match probability, just for brightnesses; see eq37 of WN18a)
Xi - Astrometric likelihood ratio (just position match/non-match comparison; see eq38 of WN18a)
Average contamination - simulated mean (percentile) brightening of the two sources, based on number density of catalogue
Probability of sources having blended contaminant above e.g. 1\% relative flux
We will provide two match runs per catalogue pair match: one with, and one without, the photometry considered, to allow for the recovery of sources with "weird" colours but otherwise agreeable astrometry

Conclusions

- Upcoming LSST:UK cross-match service macauff - let me know your thoughts/needs/hopes/dreams - Provide robust tables of cross-matches between LSST and <your favourite catalogue here!>
- Our cross-matches include two key elements for avoiding issues with the crowded LSST sky
- A generalised approach to the Astrometric Uncertainty Function allows for the inclusion of the effects of perturbation due to blended sources, and unknown proper motions - reduce false -ves!
- Optional use of photometry to reject of false interlopers (with >1 "extra" source per 2" circle in most of the LSST Galactic plane, and many spurious galactic matches) - reduce false +ves!
- With LSST as crowded as WISE per PSF area, it is vitally important to take this effect into account
- Will include additional information on the crowding of sources, allowing for selection of uncontaminated objects, or modelling of excess flux - crucial for removal of red excess in SEDs
- LSST will suffer $\sim 10 \%$ flux contamination, which could be confused with e.g. extinction, distance

